Python高级进阶-函数式编程

函数式编程

函数是Python内建支持的一种封装,我们通过把大段代码拆成函数,通过一层一层的函数调用,就可以把复杂任务分解成简单的任务,这种分解可以称之为面向过程的程序设计。函数就是面向过程的程序设计的基本单元。

函数式编程的一个特点就是,允许把函数本身作为参数传入另一个函数,还允许返回一个函数!

高阶函数

函数本身也可以赋值给变量,即:变量可以指向函数。
一个函数就可以接收另一个函数作为参数,这种函数就称之为高阶函数。

1
2
def add(x, y, f):
return f(x) + f(y)

小结
把函数作为参数传入,这样的函数称为高阶函数,函数式编程就是指这种高度抽象的编程范式。

map/reduce

Python内建了map()和reduce()函数。

map()函数接收两个参数,一个是函数,一个是Iterable,map将传入的函数依次作用到序列的每个元素,并把结果作为新的Iterator返回。

举例说明,比如我们有一个函数f(x)=x^2
,要把这个函数作用在一个list [1, 2, 3, 4, 5, 6, 7, 8, 9]上,就可以用map()实现如下:

1
2
3
4
5
6
>>> def f(x):
... return x * x
...
>>> r = map(f, [1, 2, 3, 4, 5, 6, 7, 8, 9])
>>> list(r)
[1, 4, 9, 16, 25, 36, 49, 64, 81]

reduce把一个函数作用在一个序列[x1, x2, x3, …]上,这个函数必须接收两个参数,reduce把结果继续和序列的下一个元素做累积计算,其效果就是:

1
reduce(f, [x1, x2, x3, x4]) = f(f(f(x1, x2), x3), x4)
1
2
3
4
5
6
>>> from functools import reduce
>>> def add(x, y):
... return x + y
...
>>> reduce(add, [1, 3, 5, 7, 9])
25

合并使用

1
2
3
4
5
6
7
8
9
10
>>> from functools import reduce
>>> def fn(x, y):
... return x * 10 + y
...
>>> def char2num(s):
... digits = {'0': 0, '1': 1, '2': 2, '3': 3, '4': 4, '5': 5, '6': 6, '7': 7, '8': 8, '9': 9}
... return digits[s]
...
>>> reduce(fn, map(char2num, '13579'))
13579

filter

Python内建的filter()函数用于过滤序列。

和map()类似,filter()也接收一个函数和一个序列。和map()不同的是,filter()把传入的函数依次作用于每个元素,然后根据返回值是True还是False决定保留还是丢弃该元素。

例如,在一个list中,删掉偶数,只保留奇数,可以这么写:

1
2
3
4
5
def is_odd(n):
return n % 2 == 1

list(filter(is_odd, [1, 2, 4, 5, 6, 9, 10, 15]))
# 结果: [1, 5, 9, 15]

排序算法

排序也是在程序中经常用到的算法。无论使用冒泡排序还是快速排序,排序的核心是比较两个元素的大小。如果是数字,我们可以直接比较,但如果是字符串或者两个dict呢?直接比较数学上的大小是没有意义的,因此,比较的过程必须通过函数抽象出来。

Python内置的sorted()函数就可以对list进行排序:

1
2
>>> sorted([36, 5, -12, 9, -21])
[-21, -12, 5, 9, 36]

函数作为返回值

高阶函数除了可以接受函数作为参数外,还可以把函数作为结果值返回。